Principles of Contrast-Enhanced Ultrasound
Microbubble Contrast Agents (e.g., SonoVue, Definity)
Advantages Over CT/MRI in Liver Imaging
Safety Profile and Contraindications
2. CEUS Phases and Timing
Arterial Phase (10–35 sec)
Portal Venous Phase (30–120 sec)
Late Phase (>2 min)
Wash-in and Wash-out Patterns
3. CEUS in Benign Liver Lesions
Hemangioma: Peripheral Nodular Enhancement
Focal Nodular Hyperplasia (FNH): Central Arterial Fill-in
Hepatic Adenoma: Homogeneous Hyperenhancement
Cyst: No Enhancement
4. CEUS in Malignant Liver Lesions
Hepatocellular Carcinoma (HCC): Arterial Hyperenhancement with Late Washout
Cholangiocarcinoma: Rim Enhancement, Delayed Washout
Liver Metastases: Rapid Washout in Portal Phase
Angiosarcoma: Early Hyperenhancement + Irregular Washout
5. Comparison with Other Modalities
CEUS vs CT for HCC Diagnosis
CEUS in Indeterminate Lesions (LR-3, LR-4 in LI-RADS)
Role in Guiding Biopsies or Ablations
6. Limitations and Pitfalls
Isoenhancing Lesions
Deep or Subdiaphragmatic Lesions
Artifacts: Blooming, Motion
Learning Curve for Interpretation
7. Case Examples and Interpretation
CEUS Pattern Recognition (Benign vs Malignant)
CEUS for Follow-up Post-Treatment (RFA, TACE)
Multiple Case Snapshots with Key Features
8. Quiz and Self-Assessment
Phase Identification Challenge
Spot the Pattern: HCC vs Metastasis
CEUS Diagnosis-Based MCQs
Role of Ultrasound in Prostate Evaluation
Clinical Indications (PSA Elevation, Urinary Symptoms, Cancer Screening)
Comparison with MRI and DRE
Contraindications and Patient Counseling
2. Anatomy of the Prostate 80%
Prostate Zones: Peripheral, Central, Transitional, Anterior Fibromuscular Stroma
Seminal Vesicles and Ejaculatory Ducts
Capsule and Neurovascular Bundles
Relationship to Bladder, Rectum, Urethra
3. Scanning Techniques 100%
Transrectal vs Transabdominal Ultrasound
Patient Preparation and Positioning
Probe Types and Frequencies
Volume Calculation and Prostate Measurements
Use of Color Doppler
4. Normal Prostate Ultrasound Appearance 50%
Echotexture and Size in Different Age Groups
Symmetry and Capsule Definition
Normal Seminal Vesicle Appearance
TRUS Volume Formula: L × W × H × 0.52
5. Prostate Pathologies
1. Benign Conditions
Benign Prostatic Hyperplasia (BPH)
Prostatitis (Acute and Chronic)
Prostatic Calcifications
Prostatic Cysts and Abscesses
2. Malignant Lesions
Suspicious Hypoechoic Lesions in Peripheral Zone
Extracapsular Extension
Seminal Vesicle Invasion
TRUS-Guided Biopsy Indications
3. Post-Procedural Imaging
Post-Biopsy Changes
Follow-up of Ablation or Radiotherapy
Prostatectomy Bed Evaluation (if indicated)
6. Advanced Techniques 0%
Contrast-Enhanced Ultrasound (CEUS) for Cancer Detection
Elastography: Strain and Shear Wave Techniques
TRUS-MRI Fusion for Targeted Biopsy
PI-RADS Overview (MRI Reference and Correlation)
7. Interventional Applications 0%
TRUS-Guided Biopsy Techniques (Systematic & Targeted)
TRUS-Guided Prostatic Abscess Drainage
Fusion Biopsy Planning
Role in Brachytherapy and Focal Therapies
8. Case-Based Learning and Quiz Section 0%
Benign vs Malignant Lesion Examples
Real-World Imaging Challenges
Volume Interpretation Practice
Interactive Image-Based MCQs
Role of Ultrasound in Gynecology
Common Indications: AUB, Pain, Infertility, Mass Evaluation
Transabdominal vs Transvaginal Approaches
Advantages and Limitations
2. Uterine Anatomy 100%
Fundus, Body, Isthmus, and Cervix
Endometrial Cavity, Myometrium, Serosa
Junctional Zone (Adenomyosis Marker)
Uterine Arteries and Vascular Supply
Position (Anteverted, Retroverted, Axial)
3. Scanning Techniques 100%
Transvaginal (TVS): High-Resolution, Empty Bladder
Transabdominal (TAS): Full Bladder for Overview
Sagittal and Transverse Planes
Use of Doppler and 3D Ultrasound
Measuring Uterus and Endometrial Thickness
Role of CEUS in Renal Imaging
Safety and Non-nephrotoxic Nature of Microbubble Contrast
Indications: Renal Mass Characterization, Infarcts, Perfusion Defects
2. CEUS Protocol for Kidney
Contrast Agent (e.g., SonoVue, Lumason)
Patient Prep and Injection Timing
CEUS Phases: Corticomedullary (10–30 sec), Nephrographic (30–120 sec), Late Phase (>120 sec)
Use of Dual Imaging Mode (B-mode + Contrast)
3. Renal Mass Evaluation
Cystic Lesions: Bosniak Classification with CEUS
Simple vs Complex Cysts
Solid Renal Masses (RCC, Oncocytoma, Angiomyolipoma)
Enhancement Patterns and Washout in Malignancy
CEUS vs CT in Cystic Lesion Classification
CEUS in Patients with Renal Insufficiency
Role in Lesions Indeterminate on CT
CEUS as Follow-up Modality Post-Biopsy/Ablation
6. Pitfalls and Limitations
Pseudo-enhancement in Deep Lesions
Artifacts and Motion Sensitivity
Small Cortical Lesions May Be Missed
Differentiation Between RCC Subtypes Remains Limited
7. CEUS in Renal Intervention
Guidance for Biopsy of Indeterminate Masses
Assessment of Post-ablation Viability
Follow-up for Treated Tumors
Monitoring Transplant Complications
8. Case Studies and Quiz Section
CEUS in Complex Renal Cysts (Bosniak IIF–IV)
Differentiation of RCC vs AML
Real-Time CEUS Flow Interpretation
MCQs and Image-Based Diagnostic Challenges
117 Case Study Renal Dromedary hump Dromedary hump is a normal anatomical variant of the kidney characterized by a localized bulge on the lateral border of the left kidney, typically due to impression from the adjacent spleen. It mimics a mass but maintains the normal renal cortical echotexture and vascularity on imaging, distinguishing it from pathological lesions.
Patient presents for routine abdominal ultrasound. No specific urinary symptoms. No history of flank pain, hematuria, fever, or weight loss. No known renal pathology. Incidental finding during evaluation.
Findings
image
📄 Report Sample Line- Dromedary hump The left kidney shows a localized cortical bulge along its lateral border, maintaining normal renal cortical echotexture and vascularity, consistent with a Dromedary hump — a normal anatomical variant.
Conclusion
📋 Localized cortical bulge on the lateral aspect of the left kidney represents a Dromedary hump, a normal anatomical variant with no pathological significance.
Recommendation:
Dromedary Hump - Kidney
Causes
External impression of the spleen on the developing left kidney during fetal life
Results in a focal bulge on the lateral border of the kidney
Considered a normal anatomical variant, not a disease
Symptoms
Usually asymptomatic and discovered incidentally
No pain, urinary symptoms, or hematuria
Does not impair kidney function
Diagnosis
Ultrasound (USG): Shows a cortical bulge with uniform echotexture and normal Doppler flow
CT or MRI: Used for confirmation if needed; helps rule out renal mass
Key Feature: Maintains normal renal parenchyma appearance, unlike tumors
1. What is a Dromedary hump in renal ultrasound? A. A renal artery aneurysm
B. A pathological renal mass
C. A normal cortical bulge of the kidney
D. A cyst in the renal pelvis
👉 Explanation: A Dromedary hump is a benign cortical bulge, often mistaken for a mass but part of normal kidney anatomy.
2. On which kidney is a Dromedary hump most commonly seen? A. Right kidney
B. Left kidney
C. Both kidneys equally
D. Neither kidney
👉 Explanation: It is more common on the left kidney due to pressure from the adjacent spleen.
3. What typically causes a Dromedary hump? A. Renal trauma
B. Liver compression
C. Splenic impression during development
D. Kidney stone
👉 Explanation: The spleen presses against the developing kidney, creating a persistent bulge.
4. What does a Dromedary hump look like on ultrasound? A. Anechoic fluid-filled lesion
B. Hyperechoic with shadowing
C. Isoechoic with the renal cortex
D. Heterogeneous with calcifications
👉 Explanation: It appears isoechoic to surrounding renal cortex and blends in with normal tissue.
5. What is the clinical importance of a Dromedary hump? A. It requires surgery
B. It is a sign of cancer
C. It is a normal variant with no clinical significance
D. It causes urinary tract obstruction
👉 Explanation: Dromedary humps are benign and do not require treatment.
6. How is a Dromedary hump usually discovered? A. During surgery
B. Through physical examination
C. Incidentally on imaging
D. With biopsy
👉 Explanation: It is usually found incidentally during abdominal imaging.
7. What imaging modality is most useful in identifying a Dromedary hump? A. X-ray
B. IVP
C. Ultrasound
D. PET scan
👉 Explanation: Ultrasound is typically used to identify renal cortical structures like Dromedary humps.
8. How can you differentiate a Dromedary hump from a renal tumor? A. Tumor has cystic areas
B. Tumor shows necrosis
C. Dromedary hump maintains normal echotexture and blood flow
D. Tumor is located only in lower pole
👉 Explanation: Unlike tumors, Dromedary humps have uniform echotexture and normal Doppler flow.
9. What is the next step if there’s doubt between a tumor and a Dromedary hump? A. Immediate surgery
B. Start antibiotics
C. Further imaging like CT or MRI
D. Ignore and observe
👉 Explanation: CT or MRI can provide more detailed images to rule out masses.
10. In which age group is a Dromedary hump most commonly found? A. Children
B. Elderly
C. Any age
D. Neonates only
👉 Explanation: It can occur in any age group and is developmental in origin.
11. What part of the kidney is usually involved in a Dromedary hump? A. Renal pelvis
B. Upper lateral cortex
C. Medulla
D. Lower pole
👉 Explanation: It typically affects the upper lateral border of the left kidney.
12. What is the treatment for a confirmed Dromedary hump? A. Surgical removal
B. Biopsy
C. No treatment is required
D. Radiation
👉 Explanation: No treatment is needed for a benign Dromedary hump.
13. What role does Doppler ultrasound play in evaluating a Dromedary hump? A. Measures kidney size
B. Detects stones
C. Confirms normal vascularity
D. Detects infections
👉 Explanation: Doppler shows normal blood flow in a Dromedary hump, unlike tumors.
14. Which condition can a Dromedary hump be mistaken for? A. Pyelonephritis
B. Nephrolithiasis
C. Renal tumor
D. Hydronephrosis
👉 Explanation: It can mimic renal tumors on imaging due to its bulging appearance.
15. What confirms the diagnosis of a Dromedary hump on ultrasound? A. Irregular shape
B. Central calcification
C. Continuity with renal cortex and normal blood flow
D. Mass effect on collecting system
👉 Explanation: A hump that shows same echotexture as cortex and normal Doppler flow confirms it's benign.
1. रेनल ड्रोमेडरी हंप क्या है? A. रेनल धमनी का एन्यूरिज्म
B. एक रोगजनक गुर्दा ट्यूमर
C. गुर्दे की सामान्य कॉर्टिकल उभार
D. रेनल पेल्विस की सिस्ट
👉 व्याख्या: Dromedary hump एक सामान्य शारीरिक भिन्नता है, जो गुर्दे की सतह पर एक उभार के रूप में दिखाई देती है।
2. Dromedary hump सामान्यतः किस गुर्दे में पाया जाता है? A. दायां गुर्दा
B. बायां गुर्दा
C. दोनों गुर्दों में
D. किसी में नहीं
👉 व्याख्या: यह अधिकतर बाएं गुर्दे में देखा जाता है क्योंकि उस पर प्लीहा का दबाव पड़ता है।
3. Dromedary hump बनने का कारण क्या है? A. गुर्दे पर चोट
B. यकृत का दबाव
C. भ्रूण अवस्था में प्लीहा द्वारा दबाव
D. मूत्रमार्ग में रुकावट
👉 व्याख्या: भ्रूण विकास के समय प्लीहा द्वारा गुर्दे पर पड़ने वाले दबाव से यह उभार बनता है।
4. अल्ट्रासाउंड में Dromedary hump कैसा दिखता है? A. ऐनीकोइक द्रव से भरा
B. छायायुक्त हाइपरइकोइक
C. सामान्य गुर्दा कॉर्टेक्स के समान इकोइक
D. मिश्रित और अनियमित
👉 व्याख्या: यह सामान्य गुर्दा टिशू की तरह ही इकोटेक्सचर दिखाता है, जिससे यह सौम्य लगता है।
5. Dromedary hump का चिकित्सीय महत्व क्या है? A. तत्काल सर्जरी की आवश्यकता
B. यह कैंसर हो सकता है
C. यह एक सामान्य शारीरिक भिन्नता है
D. यह पेशाब में रुकावट करता है
👉 व्याख्या: Dromedary hump हानिरहित होता है और इसका इलाज आवश्यक नहीं होता।
6. Dromedary hump का पता कैसे चलता है? A. ऑपरेशन के दौरान
B. शारीरिक परीक्षण से
C. इमेजिंग (जैसे अल्ट्रासाउंड) के दौरान
D. बायोप्सी से
👉 व्याख्या: यह सामान्यतः अल्ट्रासाउंड के दौरान संयोगवश पाया जाता है।
7. Dromedary hump की पहचान के लिए कौन सी इमेजिंग सर्वोत्तम है? A. एक्स-रे
B. IVP
C. अल्ट्रासाउंड
D. PET स्कैन
👉 व्याख्या: अल्ट्रासाउंड गुर्दे की सतह की संरचनाओं को पहचानने के लिए सर्वोत्तम है।
8. Dromedary hump को ट्यूमर से कैसे अलग करें? A. ट्यूमर में सिस्ट होते हैं
B. ट्यूमर में मृत ऊतक होता है
C. Dromedary hump में सामान्य इकोटेक्सचर और रक्त प्रवाह होता है
D. ट्यूमर हमेशा निचले ध्रुव में होता है
👉 व्याख्या: Dromedary hump में डॉपलर से सामान्य रक्त प्रवाह दिखता है और यह गुर्दे की सतह से जुड़ा होता है।
9. यदि संदेह हो कि यह ट्यूमर है, तो अगला कदम क्या होगा? A. तत्काल सर्जरी
B. एंटीबायोटिक देना
C. CT या MRI द्वारा पुष्टि
D. इसे अनदेखा करें
👉 व्याख्या: CT/MRI जैसी इमेजिंग से ट्यूमर और हंप में अंतर किया जा सकता है।
10. Dromedary hump किस आयु वर्ग में देखा जा सकता है? A. केवल बच्चों में
B. वृद्धों में
C. किसी भी उम्र में
D. केवल नवजातों में
👉 व्याख्या: यह किसी भी उम्र के व्यक्ति में पाया जा सकता है क्योंकि यह एक विकासात्मक विशेषता है।
11. गुर्दे का कौन सा भाग Dromedary hump से प्रभावित होता है? A. पेल्विस
B. ऊपरी बाहरी कॉर्टेक्स
C. मेडुला
D. निचला ध्रुव
👉 व्याख्या: यह आमतौर पर बाएं गुर्दे के ऊपरी बाहरी भाग पर होता है।
12. पुष्ट Dromedary hump के लिए इलाज क्या है? A. सर्जिकल हटाना
B. बायोप्सी
C. कोई इलाज नहीं चाहिए
D. रेडिएशन थेरेपी
👉 व्याख्या: पुष्ट Dromedary hump के लिए कोई इलाज आवश्यक नहीं है क्योंकि यह हानिरहित होता है।
13. डॉपलर अल्ट्रासाउंड Dromedary hump में किसलिए उपयोगी है? A. गुर्दे का आकार मापने के लिए
B. पथरी की पहचान के लिए
C. सामान्य रक्त प्रवाह की पुष्टि के लिए
D. संक्रमण का पता लगाने के लिए
👉 व्याख्या: डॉपलर सामान्य रक्त प्रवाह दर्शाता है, जिससे यह ट्यूमर नहीं बल्कि हंप साबित होता है।
14. Dromedary hump किस स्थिति से भ्रमित हो सकता है? A. पायलोनफ्राइटिस
B. मूत्रपथ की पथरी
C. रेनल ट्यूमर
D. हाइड्रोनफ्रोसिस
👉 व्याख्या: इसका उभार ट्यूमर जैसा लग सकता है, इसलिए इसे भ्रमित किया जा सकता है।
15. Dromedary hump की पुष्ट पहचान कैसे होती है? A. अनियमित आकार
B. केंद्र में कैल्सीफिकेशन
C. कॉर्टेक्स से निरंतरता और सामान्य रक्त प्रवाह
D. मूत्र संग्रह प्रणाली पर दबाव
👉 व्याख्या: जब यह गुर्दे के कॉर्टेक्स से जुड़ा हो और सामान्य डॉपलर प्रवाह हो, तब यह हंप माना जाता है।
📘 उत्तर कुंजी (Answer Key)
यह उत्तर तालिका केवल सब्सक्राइब करने के बाद दिखाई देगी।
This answer key will be visible only after you subscribe.
कृपया नीचे क्लिक करके हमारे ब्लॉग को सब्सक्राइब करें:
Please click below to subscribe to our blog:
CEUS = Contrast-Enhanced Ultrasound
Involves real-time liver perfusion using microbubble contrast
No ionizing radiation or nephrotoxicity
Especially useful in cirrhosis, focal liver lesions, or contrast contraindications
2. Technique and Phases 100%
IV bolus of contrast agent (e.g., SonoVue)
Scanning in 3 major phases:
– Arterial (10–30 sec)
– Portal Venous (30–120 sec)
– Late (>120 sec to 4–6 min)
Real-time evaluation of enhancement and washout patterns
3. CEUS Patterns of Liver Tumors 100%
1. Benign Lesions
Hemangioma – Peripheral nodular enhancement with centripetal fill-in, no washout
FNH (Focal Nodular Hyperplasia) – Spoke-wheel arterial pattern, iso/hyper in late phase
Regenerative Nodules – Isoenhancement in all phases, no washout
2. Malignant Lesions
HCC (Hepatocellular Carcinoma) – Arterial hyperenhancement, mild late washout
Metastases – Rim or heterogeneous enhancement, early and marked washout
Cholangiocarcinoma – Rim enhancement, early intense washout
Lymphoma – Hypoenhancing or rim-enhancing, washout variable
4. Clinical Applications 90%
Characterization of indeterminate liver lesions
Differentiation between benign and malignant nodules
Diagnosis of small HCCs in cirrhotic livers
Follow-up after local therapies (e.g., RFA, TACE)
Alternative when CT/MRI is contraindicated
5. Advantages and Limitations 100%
Advantages
Real-time, bedside imaging
No radiation or nephrotoxicity
Dynamic perfusion assessment
Repeatable and safe
Limitations
Operator dependency
Limited field of view (compared to CT/MRI)
Difficult in obese or gassy patients
Less effective in multifocal or deep lesions
6. Case Studies and Quiz Section 0%
CEUS patterns: HCC vs Hemangioma vs Metastasis
Quiz: Match CEUS phases with correct lesion diagnosis
Image-based lesion interpretation
Case review of CEUS in cirrhotic liver
Definition and Clinical Importance of Free Fluid
Indications for Ultrasound Detection of Ascites
Differential Diagnosis: Transudate vs Exudate
Role in Emergency, ICU, and Oncology Settings
2. Relevant Anatomy & Fluid Spaces 80%
Peritoneal Compartments: Supramesocolic, Inframesocolic
Morrison’s Pouch (Hepatorenal Space)
Pouch of Douglas (Rectouterine/Rectovesical)
Paracolic Gutters and Subphrenic Spaces
Retroperitoneal Compartments (Differentiation)
3. Scanning Technique and Patient Prep 100%
Patient Positioning (Supine, LLD, RLD)
Probe Selection: Curvilinear 3–5 MHz
Use of Sweep and Fan Motion
Real-Time Graded Compression
Dynamic Shifting with Position Change
Diagnostic Paracentesis
Therapeutic Tapping of Ascites
Site Selection and Needle Guidance
Complications and Post-Procedure Follow-up
7. Advanced Modalities and Comparison 0%
CT vs Ultrasound in Detecting Fluid Collections
MRI Features of Complex Ascites
Contrast-Enhanced Ultrasound (CEUS) in Malignant Ascites
Role of Elastography in Cirrhotic Ascites
8. Case Studies and Quiz Section 0%
Ascites with Cirrhosis
Malignant Peritoneal Disease
Ectopic Pregnancy with Hemoperitoneum
Spot Diagnosis: Image-Based Quiz Questions
Patient Positioning (Supine, Left/Right Lateral Decubitus)
Fluid-Dependent Windowing
Probe Selection: Curvilinear and Linear
Sweep Technique for Retroperitoneal Structures
Use of Color Doppler to Differentiate Vessels
4. Normal Sonographic Findings 50%
Anechoic Potential Space (No Free Fluid)
Visualizing Peritoneal Reflections
Normal Bowel and Omental Movement
Retroperitoneal Fat Planes and Organ Borders
5. Peritoneal Pathologies
1. Fluid Collections
Ascites (Transudative vs Exudative)
Hemoperitoneum
Peritoneal Abscess
Retroperitoneal Abscess
Urinoma (Peritoneal or Retroperitoneal)
Chylous Ascites
Lymphocele (Post-surgical)
Seroma
Pancreatic Pseudocyst
Contrast-Enhanced Ultrasound in Peritoneal Disease
CT vs Ultrasound for Retroperitoneal Evaluation
MRI in Retroperitoneal Fibrosis
Limitations and False Positives
10. Case Studies and Quiz Section 0%
Ascites: Benign vs Malignant Clues
Peritoneal vs Retroperitoneal Mass Differentiation
Emergency Scenarios (Trauma, Hemorrhage)
MCQs and Image-Based Interpretation Practice
Role of Ultrasound in Large Bowel Evaluation
Indications: Pain, AUB, Diarrhea, Bleeding, Mass
Comparison with CT, MRI, and Endoscopy
Advantages and Limitations of US
2. Colon Anatomy and Landmarks 100%
Cecum, Ascending, Transverse, Descending, Sigmoid Colon
Haustra vs Small Bowel Folds
Layers of Colonic Wall (5-layer pattern)
Relation to Adjacent Organs
Rectosigmoid and Anal Canal (Brief Overview)
3. Scanning Technique 100%
Curvilinear and High-Frequency Linear Probe
Graded Compression Technique
Patient Positioning and Colon Segmental Survey
Color Doppler for Hyperemia
Bowel Wall Measurements and Compressibility
4. Normal Colon Appearance 100%
Wall Thickness ≤ 4 mm (Non-distended)
Haustral Pattern and Normal Peristalsis
Shadowing from Gas and Fecal Material
No Free Fluid or Adjacent Inflammatory Change
5. Structural, Congenital, and Post-Surgical Changes
Redundant Colon
Malrotation with Colonic Involvement
Hirschsprung’s Disease (Neonates)
Post-colectomy Changes
Colonic Anastomotic Site Thickening
Surgical Stoma Evaluation (Colostomy)
Colonic Pouch or Reservoir Assessment
6. Miscellaneous and Rare Conditions
Toxic Megacolon
Pneumatosis Coli
Colonic Intussusception (Colo-colic)
Foreign Body in Colon
Appendiceal Mucocele extending into Colon
Melanosis Coli (indirect signs)
Endometriosis Involving Colon
Hematoma in Colon Wall (trauma/anticoagulation)
Amyloidosis involving Colon
Sarcoidosis with Colonic Manifestation
Tuberculosis of Colon
10. Interventional and Follow-Up Role 0%
Evaluation of Treatment Response in IBD
Post-surgical Monitoring of Anastomosis
Guiding Abscess Drainage near Colon
Detecting Recurrence or Complications
11. Case Studies and Quiz Section 0%
UC vs Crohn's: Segmental vs Continuous Involvement
Diverticulitis Mimicking Tumor
Ischemic vs Infective Colitis
Image-Based Interpretation and Common Pitfalls
Indications: Pain, Vomiting, Palpable Mass
Role in Pediatric vs Adult Evaluation
Real-Time Assessment of Motility and Wall Layers
Advantages and Limitations of Gastric Sonography
Role of Ultrasound in Small Bowel Evaluation
Clinical Indications: Pain, Diarrhea, Obstruction, Bleeding
Comparison with CT/MRI and Endoscopy
Advantages and Limitations
2. Anatomy and Physiology 100%
Duodenum, Jejunum, Ileum Overview
Layered Wall Structure: 5-Layer Pattern
Wall Thickness Norms
Peristalsis and Fluid-Gas Content
Mesentery and Vascular Landmarks
3. Scanning Techniques 100%
Curvilinear and High-Frequency Linear Probe
Graded Compression Technique
Supine and Left Lateral Decubitus Views
Color Doppler for Vascularity
Segmental Survey (RLQ to LUQ)
4. Normal Small Bowel Appearance 100%
Wall Thickness < 3 mm (Non-distended)
Preserved Mucosal Folds (Valvulae Conniventes)
Regular Peristalsis
Compressibility and Luminal Content
No Free Fluid or Gas Abnormalities
Ultrasound-Guided Fluid Aspiration (Abscesses)
Monitoring of Treatment in Crohn’s Disease
Follow-Up of Submucosal Lesions
Postoperative Evaluation (Leaks, Obstruction)
7. Case Studies and Quiz Section 0%
Acute Appendicitis vs Crohn’s Ileitis
SBO with Transition Point Localization
CEUS in Small Bowel Mass Evaluation
Interactive MCQs with Annotated Images
Importance of Appendix Ultrasound
Indications in Suspected Appendicitis
Role in Pediatric vs Adult Patients
Limitations and Diagnostic Challenges
2. Anatomy of the Appendix 70%
Typical and Atypical Positions (Retrocecal, Pelvic)
Relation to Cecum and Terminal Ileum
Vascular Supply (Appendicular Artery)
Size and Normal Wall Layers
3. Patient Preparation and Scanning Technique 100%
Fasting and Bladder Prep (if required)
Graded Compression Technique
Probe Selection (High-Frequency Linear)
Longitudinal and Transverse Views
Scanning Tips for Pediatric Patients
4. Normal Appendix Appearance 50%
Blind-Ending Tubular Structure
Compressibility and Wall Thickness
Normal Diameter (<6 mm)
Identification of Mucosal and Submucosal Layers
5. Pathologies of the Appendix
1. Appendicitis
Acute appendicitis
Non-Compressible, >6 mm Diameter
Target Sign (Cross-section)
Wall Hyperemia on Color Doppler
Periappendiceal Fat Inflammation Chronic Appendicitis Epiploic appendagitis Sub hepatic appendicitis Gangrenous appendicitis
2. Complicated Appendicitis
Perforation
Peri appendicle Abscess/Abscess Formation
Appendicolith
Free Fluid or Phlegmon
Color and Spectral Doppler for Flow Analysis
M-mode of IVC for Fluid Status Estimation
IVC Collapsibility Index (IVC-CI) in Shock
Role of CT Angiography vs. Ultrasound
8. Case Studies and Quiz Section 0%
Emergency Aortic Aneurysm Case Scenarios
Image-Based Identification Challenges
Doppler Waveform Quizzes
Diagnostic Errors and Learning Pearls
Clinical Relevance of Adrenal Imaging
Hormonal Function and Systemic Role
Indications for Adrenal Ultrasound
Limitations and Challenges of Visualization
2. Anatomy of the Adrenal Glands 60%
Location: Suprarenal Position
Right vs Left Adrenal Shape and Size
Adrenal Cortex and Medulla Zones
Relationship to Kidney, IVC, Aorta, and Diaphragm
3. Technique and Patient Preparation 100%
Optimal Patient Positioning (Lateral, Oblique)
Scanning Approach (Intercostal, Subcostal)
Transducer Selection (High Frequency Curved/Linear)
Strategies to Overcome Bowel Gas Obstruction
4. Normal Adrenal Ultrasound Appearance 50%
Size and Shape of Adrenal Glands
Hypoechoic and Triangular or Y-Shaped Appearance
Neonatal vs Adult Visibility
Adjacent Structures for Landmark Identification
5. Adrenal Pathologies
1. Congenital Anomalies
Adrenal Hypoplasia
Ectopic Adrenal Tissue
Adrenal Cysts in Neonates
Adrenal Biopsy Guidance (Usually CT-guided)
Ultrasound Role in Follow-Up of Adrenal Masses
Post-Operative and Post-Radiotherapy Evaluation
Follow-up of Known Endocrine Tumors
7. Advanced Modalities and Differential Diagnosis 0%
Role of CT and MRI in Adrenal Evaluation
Functional Imaging (PET-CT, MIBG for Pheochromocytoma)
CEUS in Adrenal Mass Characterization
Differentiating Benign vs Malignant Adrenal Lesions
8. Case Studies and Quiz Section 0%
Clinical Case Reviews
Image-Based MCQs
Diagnostic Challenges
Pitfalls in Adrenal gland Ultrasound Interpretation
Ductal Dilatation
Calculi in Pancreatic Duct
Strictures and Obstruction
Double Duct Sign
6. Interventional and Post-Therapy Imaging 0%
Ultrasound-Guided Drainage of Pseudocysts
EUS Overview for Pancreatic Biopsy
Post-Operative Pancreatic Bed Evaluation
Post-Endoscopic Interventions (Stent, Sphincterotomy)
7. Advanced Modalities and Differential Diagnosis 0%
Role of CT and MRI
Contrast-Enhanced Ultrasound (CEUS)
Elastography in Chronic Pancreatitis
Differentiation of Mass vs. Focal Pancreatitis
8. Case Studies and Quiz Section 0%
Classic Pancreatic Case Scenarios
Sonographic Image-Based Questions
Common Diagnostic Pitfalls
Tips and Pearls in Pancreatic Ultrasound
Post-Splenectomy Changes
Splenic Artery Embolization
Post-traumatic Drainage Procedures
Identification of Residual or Accessory Spleen
7. Advanced Modalities and Differential Diagnosis 0%
Role of CT and MRI in Splenic Evaluation
CEUS in Splenic Masses and Trauma
Elastography for Splenomegaly Assessment
Differentiating Benign from Malignant Lesions
8. Case Studies and Quiz Section 0%
Clinical Case Reviews
Image-Based MCQs
Diagnostic Challenges
Pitfalls in Spleen Ultrasound Interpretation
1. Introduction to Gallbladder & Biliary System 100%
Clinical Importance and Overview
Role in Digestion and Physiology
Common Indications for Biliary Ultrasound
Limitations and Contraindications
2. Anatomy of Gallbladder & Biliary Tree 40%
Gallbladder (Fundus, Body, Neck)
Cystic Duct
Common Bile Duct (CBD)
Intrahepatic and Extrahepatic Bile Ducts
Ampulla of Vater and Sphincter of Oddi
Relationship with Liver, Pancreas, Duodenum
3. Patient Preparation and Positioning 100%
Fasting Requirements
Standard Scanning Positions
Techniques to Improve Visualization
Respiratory Maneuvers and Patient Cooperation
4. Technical Approach to Ultrasound 100%
Transducer Selection (Curvilinear, High-Frequency)
Imaging Modes (B-mode, Color Doppler)
Machine Settings and Optimization
Common Artifacts in Biliary Imaging
5. Normal Sonographic Appearance 60%
Gallbladder Wall Thickness and Contents
CBD Diameter by Age
Normal Variants (Folded GB, Phrygian Cap)
Visualization of Intrahepatic Ducts
Flow in Portal Triad with Doppler